Positive solutions for a class of singular semipositone boundary value problems
نویسندگان
چکیده
منابع مشابه
Positive Solutions for Second-Order Singular Semipositone Boundary Value Problems
which arises in many different areas of applied mathematics and physics. Singular problems of this type that the nonlinearity g may change sign are referred to as singular semipositone problems in the literature. Motivated by BVP (1.1), this paper presents the existence results of the following second-order singular semipositone boundary value problem: { u ′′ + f(t, u) + g(t, u) = 0, 0 < t < 1,...
متن کاملPositive Symmetric Solutions of Singular Semipositone Boundary Value Problems
Using the method of upper and lower solutions, we prove that the singular boundary value problem, −u = f(u) u in (0, 1), u(0) = 0 = u(1) , has a positive solution when 0 < α < 1 and f : R → R is an appropriate nonlinearity that is bounded below; in particular, we allow f to satisfy the semipositone condition f(0) < 0. The main difficulty of this approach is obtaining a positive subsolution, whi...
متن کاملPositive Solutions for a Class of Singular Boundary-value Problems
Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions.
متن کاملPositive Solutions for a Class of Singular Boundary-value Problems
This paper concerns the existence and multiplicity of positive solutions for Sturm-Liouville boundary-value problems. We use fixed point theorems and the sub-super solutions method to two solutions to the problem studied. Introduction Consider the boundary-value problem Lu = λf(t, u), 0 < t < 1 αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, (0.1) where Lu = −(ru′)′ + qu, r, q ∈ C[0, 1] with r > 0, q ≥ ...
متن کاملPositive Solutions of a Singular Positone and Semipositone Boundary Value Problems for Fourth-Order Difference Equations
This paper studies the boundary value problems for the fourth-order nonlinear singular difference equationsΔ4u i−2 λα i f i, u i , i ∈ 2, T 2 , u 0 u 1 0, u T 3 u T 4 0. We show the existence of positive solutions for positone and semipositone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2001
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(00)00249-1